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We examine the problem of a steady, inviscid, reduced-gravity rotating flow in a 
wedge around a sharp corner. Solutions to nonlinear equations are obtained via a 
power-series expansion in a Rossby number, diffraction theory and Green’s function 
method. The wedge of an angle @ is used, as an example, to show details of the 
solution. The results exhibit the relative importance of the pressure gradient, 
centrifugal and Coriolis forces. For re-entrant corners, a centrifugal upwelling of the 
interface occurs very close to the apex and, hence, is not important if coastal radii 
of curvature are comparable to, or larger than, the Rossby radius; the flow is also 
supercritical within an arc, whose size depends upon the Rossby number and the 
angle of the wedge. Using two or more corner solutions, plausible flow streamlines 
can be generated in more complicated domains, as long as no two corners are closer 
than the Rossby radius of deformation. This procedure is illustrated with two 
examples: (i) circulation in a channel mouth; and (ii) flow around a square bump 
in a coastline. 

1. Introduction 
Large-scale models of ocean circulation necessarily ignore many details of coastal 

geometry. Although the main features of oceanic gyres are almost certainly indepen- 
dent of the precise geometry of coastlines, the boundary currents which form part 
of these gyres may be deflected or bifurcated by promontories or submerged features. 
The channelling of a significant part of the western boundary current of the North 
Atlantic mid-latitude gyre by the Strait of Florida and the influences of the 
Charleston bump (Janowitz t Pietrafesa 1982) on the Gulf Stream provide familiar 
illustrations of the above statement. Further striking examples of how boundary 
currents follow a coastline and loop into wide sea straits are provided by the western 
part of the sub-polar gyre of the North Atlantic (figure 1). The East Greenland 
Current hugs the coast of Greenland to transform itself into the West Greenland 
Current, which continues into and around B a f i  Bay to flow outwards as the Baffin 
and then the Labrador Current. Along its course the Baffin Current loops in and out 
of Lancaster Sound at its northern end (Fissel, Lemon & Birch 1982) and Hudson 
Strait further south (LeBlond 1980; LeBlond et al. 1981). It is the nature of these 
deflections by headlands and into channels which is the subject of this paper. We 
examine the behaviour of model flows around single wedges of arbitrary angles and 
near pairs of wedges which simulate the entrance to side channels such as Hudson 
Strait and Lancaster Sound. The re-entrant circulation observed in these channels 
has been documented by iceberg drift observations (Marko, Birch & Wilson 1982), 
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FIGURE 1 .  The western part of the sub-polar gyre of the North Atlantic. 

the distribution of water properties (Osborn et al. 1978; Fissel et al. 1982), and flow 
measurements from drifting and moored instruments (LeBlond et al. 1981 ; Fissel et 
al. 1982; Drinkwater 1985). The analysis of their mean flow characteristics is a first 
step in understanding the complex dynamics of these areas. 

The formulation is similar to that used by Whitehead, Leetmaa & Knox (1974), Gill 
(1977), Nof (1978a, b) and Roed (1980) to study the rotational hydraulics of channel 
flows, but is not restricted to slowly varying coastlines: the full two-dimensional 
problem is treated here. Whitehead et al. (1974) derived depth and velocity profiles 
inside a channel as functions of the upstream depth. Nof solved two-dimensional 
problems of a steady one-layer outflow over a step (19784 and of a two-layer outflow 
(19786) from a channel into a wider basin, with velocity profiles prescribed in the 
mouth of the channel. Gill (1977) derived solutions for the case of a hydraulic control 
by a weir in a channel with slowly varying width and depth. Roed (1980) did a similar 
analysis for the case of a single coastline with a slowly varying curvature and depth 
profile. Nof & Olson (1983) used conservation of integrated momentum to calculate 
transports through broad passages between oceans and marginal seas, although they 
did not attempt to describe details of the flow in the passage itself. We are aware 
of only one example of a detailed analytical solution for the flow around a 
fast-changing coastline. Hughes (1981, 1982) has modelled an upper layer flow with 
separation (and a downstream control by another coastline) around a sharp corner 
on a low-latitude f-plane; i.e. in the limit of slow rotation. We endeavour to do the 
same here, but for the case of a mid- to high-latitudef-plane, where the stronger 
Coriolis force tends to keep the boundary current attached to the coast on its right, 
even around corners with significant curvatures. In the next section, we derive 
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equations of motion for the case of a non-uniform potential-vorticity coastal flow 
with an exponential profile, which decays offshore with a scale given by a modified 
Rossby radius. The resulting nonlinear equations are then expanded in a power series 
in E ,  a Rossby number based on this scale. The solution for a flow around an arbitrary 
corner is derived in $3, using diffraction and Green’s function methods. In $4 we show 
how to combine these solutions to model flows in channel mouths and around 
irregular coastlines. 

2. The governing equations 
Our analysis of coastal flows is based on the conservation principles that govern 

the steady inviscid motion of an incompressible fluid in a rotating frame of reference. 
These are Bernoulli’s equation 

;(u2+v2)+g’h = G($),  (2.1) 

and the potential vorticity equation 

Their derivation can be found in standard textbooks (e.g. Pedlosky, 1979, p. 64; 
Gutman 1972). Here u and v are the horizontal velocity components, h is the 
thickness of the moving layer, f the Coriolis parameter, g‘ = ( A p / p ) g  the reduced 
gravity, and $ the transport stream function whose definition through 

hv = $,, -hu = $y (2.3) 

(hu),+ (hu), = 0. (2.4) 

is a direct consequence of the volume conservation principle 

G($) and K($)  are functions of integration that are derived from the upstream 
conditions. They are not independent but are connected through K ( $ )  = G($) 
(Charney 1955; Gutman 1972). This last relation can be derived by differentiating 
(2.1) with respect to z and then combining the result with the z momentum equation, 

uu,+vu,-fv = -g’h,, 

while using (2.3) and the chain rule, G, = G@ eZ. Finally, the boundary condition at  
the coast is specified by assuming it to be a streamline. 

2.1. The upstream projile 
LeBlond (1980) showed that when a coastal current is in a geostrophic balance with 
the pressure gradient due to a linearly sloping interface (figure 2a),  then the interface 
meets the surface at a distance X, given by 

where R = C/f is the Rossby deformation radius, F = I‘/Cis the Froude number based 
on the velocity C = (g’H)f of long internal gravity waves, and I‘ and H are, 
respectively, the flow speed and thickness at the coastal boundary. In order to allow 
for a smooth transition between the coastal current and the offshore region, we assume 

13-2 



382 J .  Cherniawsky and P.  H .  LeBlond 

(4 (4 (4 
FIQURE 2. Three profiles of the upper-layer depth: (a) linear h = H(l - z / X ) ,  (a) exponential 

h = He-2/x and (c) exponential h = D + He-xlx. 

that the interface depth decreases exponentially offshore (figure 2b) with the same 
scale X, 

Assuming geostrophy, we also get 

h(z) = He-z/x. (2.6) 

where V = g’H/fX = FC if we use (2.5). When the first equation in (2.3) is integrated 
with respect to z, we find that the transport stream function is given by 

$(x) = Qe-2z/x, (2.8) 

with the arbitrary constant set to zero. Note that Q = $(O)  = t VHX is also the total 
transport in a triangular profile (figure 2a), which lends support to using X as the 
horizontal lengthscale. It is worthwhile to note that for an exponential depth profile 
X remains invariant (i.e. it does not change with the distance offshore) if we replace 
C and F with their local values 

c(z) = [g’h(z)$ and F ( z )  = I v(z) I/c(z). 

In order to see the connection between the decay scale X and the Rossby radius 
of deformation, used by many authors as a lateral scale for coastal flows (e.g. Nof 
1978a, b, 1984; Stommel & Luyten 1984)) we consider (for a moment) a current 
thickness that is given by 

where D is some non-zero constant reference depth (figure 2c). If we now assume a 
uniform potential vorticity, then, for the one-dimensional case, (2.2) becomes 

h(z)  = D+He-2/x, (2.9) 

5- v +f -- f 
h D ’  

But w, = ( V / X ) e - z / x  and V / X  = Pf, so that from (2.10) we get 

(2.10) 

(2.11) 
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or 

Hence, 

H -=P. 
D 

(2.12) 

(2.13) 

i.e. in this case, X is the Rossby radius based on the reference depth D. We note that 
for F < 1, H < D, so that for a vanishing D (figure 2b) the uniform potential vorticity 
equation (2.10) is not applicable, R, is meaningless and X as defined by (2.5) is the 
natural decay scale. By defining a potential depth H p  = H / P ,  we get X = (g’H,)+/f, 
so that in a wider sense we can call X a Rossby deformation radius (based on H p ) .  
The use of the ‘ potential depth ’ in constant-potential-vorticity models, though not 
always so named, is not new (e.g. Stommell965; Flier1 1979; Gill & Schumann 1979; 
Stommel & Luyten 1984). 

We now use (2.6)-(2.8) in the one-dimensional versions of (2.1) and (2.2) and obtain 

and 

(2.14) 

(2.15) 

When these are combined with (2.1) and (2.2) we get a pair of nonlinear equations 
which together with (2.3) and some prescribed boundary conditions (to be specified 
later) define the physical problem of inviscid rotational flow along a coast. 

2.2. Scaling and derivation of the governing equationa 
We non-dimensionalize the variables according to 

(z,Y) = X(Z’,?/’), (u,v) = V(U’,V’), h = Hh’, $ = &$’. (2.16) 

Substitution into (2.1 k(2.3) gives (after dropping the primes) the non-dimensional 
equations 

h+$(u2+v2) = $i+$$, (2.17) 

(2.18) 

(2.19) 

We have used E = F2 = V / f X ,  a Rossby number that is based on X. We eliminate 
square roots by changing to a new stream-function variable s according to 

$ = 82. (2.20) 

2h+s(u2+v2) = 8(2+€8) (2.21) 

S [ ~ + E ( V , - U ~ ) ]  = h(l+ES) (2.22) 

As a result, (2.17)-(2.19) become 

vh = SS,, -uh = asy. (2.23) 

We consider 8, h, u and v as regular functions of the Rossby number e, expressing 
them in a regular perturbation expansion of the form 

(2.24) 
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h, = so, 

2h,+u;+v; = 2s,+s;, 

h,+u,u,+vov, = s,+s,s,. 

so = h,, 
From (2.22), we obtain 

(2.25 a) 

(2.253) 

(2.25 c) 

( 2 . 2 6 ~ )  

8, + so(v0z - uoy) = h, + h, 80,  (2.266) 

s 2 + ~ 1 ( " 0 z - ~ o y )  +so("lx-uly) = h2+h,so+hos,. ( 2 .26~)  

Finally, the continuity equations (2.23) yield 

%lh, = sosoz, -uoh, = sosoy, ( 2 . 2 7 ~ )  

voh ,+~ ,ho  = (sosl)z, -uoh,-u,h, = (s,sl)y. (2.27 b )  

We can now use these equations to get a single equation for the O( 1)  stream-function 
variable so and another one for the O(s)  contribution sl. From either ( 2 . 2 5 ~ )  or 
(2.26a), we get 

h, = so, (2.28) 

which shows that the O(1) interface depth is a streamline. As a result, from (2.27a) 
we obtain the O( 1 )  velocities, 

vo = soz, -uo = soy, (2.29) 

so that, at least to this order, the flow is geostrophic. Consequently, we also get the 
O(1) relative vorticity 

vox-uoy = Vts, (2.30) 

and the O( 1 )  kinetic energy 

u, = t(u;+v;) = i(VSo)2. (2.31) 

From (2.253) it follows that the O ( E )  layer depth is related to s1 via 

h, = s1 +t[si- (Vs0)2], (2.32) 

while, from (2.263), we find 

h, = s1+so(V2s0-so). (2.33) 

We combine the last two equations to obtain the differential equation for so: 

s; - ( Vs0)2 

290 
v2so -so = (2.34) 

Even to this leading order, the equation is nonlinear. This nonlinearity can be 
traced back to the non-uniformity of the potential vorticity, which is a consequence 
of (2.6). From (2.32) we see that the right-hand side of (2.34), which looks like the 
departure of the O( 1)  kinetic energy from its value upstream (divided by the depth 
h,, see (2.17) and (2.253)), is also the O(s) departure of the depth h from the streamline 
s, and this difference contributes to the balance between the relative vorticity term, 
V2so, and the vortex stretching term so (= ho). As we shall see in the next section, 
the right-hand side of (2.34) vanishes whenever the motion is rectilinear, which is the 
case upstream or far from boundaries. In particular, upstream, where h = s identically, 
h, = s1 = 0 and hence the relative vorticity is equal to s and the kinetic energy is equal 
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to is2. Following the same method, it is not difficult to show that in the case of a 
uniform potential-vorticity function K($) ,  the right-hand side of (2.34) vanishes and 
hence the O(1) equation for so is linear. 

The derivation of the equation for s1 is given in the Appendix. The result is 

so V%, + vs, * vs, + (VZS, - 39,) s1 = w, (2.35) 

where (see the Appendix) 

(2.36) 

The function W can be rewritten more concisely as 

w = so(w+s;)-(vso*v) u,, (2.37) 

where M = +so - U,/so is the right side of (2.34) and U, is the O( I )  kinetic energy, given 
by (2.31). It can be shown that when the flow is rectilinear, W vanishes identically, 
together with M. 

We can linearize (2.34) and simplify the left side of (2.35) if we use transformations 

so = p i  (2.38) 

and s1 = p-iq. (2.39) 

These result in two modified Helmholtz equations, an homogeneous one for the O( 1) 
stream-function variable p ,  

vzp- ($)Zp = 0, (2.40) 

and an inhomogeneous one for the O(E) q, 

v2q- ($)2g = p-j w. (2.41) 

Also, since s2 = $ = $,+qb1 + .. ., we get 

(2.42) 

Equations (2.38)-(2.42) define the physical problem if the shape of the domain and 
the boundary conditions are specified. 

3. Rotating flow around a sharp bend 
We proceed now to solve the problem, stated in the previous section, for the 

particular case of a domain bounded by two straight walls, which are located at  8 = 0 
and 8 = n/a ,  with a > a. As stated previously, we assume that a geostrophic current 
with an exponential depth profile, given by (2.6), approaches the bend from 
upstream, with the 8 = n/a boundary on its right. We also assume that, unless it 
should appear explicitly from the solution of the problem, there is no separation of 
streamlines from the bounding wall. Consequently, the current turns the bend, even 
for a re-entrant corner, and the far-downstream depth profile is identical with that 
far upstream of the corner. 

The equations to be solved are (2.40) and (2.41). The boundary condition at the 
wall is s = 1, which can be expanded to give 

p = 1 at  8 = 0, n/a  (3.1) 

and q = 0 at  8 = 0, n/a.  (3.2) 
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3.1. The O( 1 )  solution 
Before we start, it should be pointed out that (2.40) and (3.1) are connected with the 
problem of diffraction of a Kelvin wave by a wedge. The latter was solved by Roseau 
(1967) and also by Packham & Williams (1968) for a general wedge angle using a 
complex integral representation. Buchwald (1968) used the Wiener-Hopf technique 
to solve the diffraction problem for the particular case of a Kelvin wave incident at 
a right-angled corner. In principle, the solution of our problem should be obtainable 
from the latter by a limiting process, wherein the Kelvin wave transforms into a 
geostrophic current with an exponential profile, in the limit of zero frequency. 
Unfortunately, owing to its complexity, only asymptotic forms of the wave solution 
were presented in the above papers. 

The methods employed by Roseau and by Packham & Williams are related to 
the ‘Sommerfeld diffraction problem ’, which deals with the diffraction of electro- 
magnetic waves by a conducting wedge. Sommerfield (1896) solved it for the case of 
a half-screen (wedge of an angle 2n) and also showed how to do it for an angle which 
is a submultiple of 2nn, where n is a positive integer (for an illuminating discussion, 
the reader is referred to Sommerfeld 1954, $38). His method was generalized to an 
arbitrary angle by Macdonald (1915), Bromwich (1915), Whipple (1916) and Carslaw 
(1919). Some of the extensive literature on the subject was reviewed by Oberhettinger 
(1954). 

Since we chose to use the results of diffraction theory, we briefly review its 
formulation. We need consider only the special case of a plane wave of unit strength, 
F, = exp{ik[ct+r cos (8-8,)]}, incident from the direction 8, at a right angle to an 
edge of the wedge. After removal of the time dependence, the Sommerfeld diffraction 
problem reduces to solving the Helmholtz equation, 

V 2 P +  k2P = 0, (3.3) 

subject to the condition that the solution P is zero on each boundary. 
Bromwich (1915) used the case of the wedge n/n, where n is a positive integer, as 

a starting point of the familiar method of images. He replaced the sum of the images 
by a complex integral and then extended his formulae to hold for any (real and 
positive) value of n = a. Subsequently, by deforming the integration path, Whipple 
(1916) was able to show that the solution can be written as 

P = ‘sum of visible images’ 
- F(R + 8-  8,) - F(7t- 8+ 8,) + F ( x - 8 -  8,) + F(R +8+ 8J, (3.4) 

where the diffraction terms F are given by 

F($)  = a sin (a$) I,” exp ( - ikr cosh u) du 
cosh (uu) - cos (ad) ’ 

and the ‘visible images’ are the incident wave F, and its images that are ‘visible’ 
at  ( r ,  8). Whipple also showed that each diffracted term F($)  satisfies (3.3). 

In order to solve the boundary-value problem, defined by (2.40) and (3.1), we 
change k to ik, (k = t in (2.37)) and describe the incoming current as an evanescent 
plane ‘wave’ emanating from the boundary at  8 = n/a.  Thus the ‘wave source’ is 
presumed to ‘radiate’ from the direction 8, = ~ / u + + n  (figure 3) ,  in which case 

(3.5) 2n 

F, = exp [kr cos (8-8,)] = exp (3.6) 
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FIGURE 3. The incoming current profile as an evanescent ‘wave’ emanating from the boundary 
along 0 = x / a .  

As a result, the diffracted term (3.5) becomes (see Whipple 1916 for details) 

exp (ikr sinh u) du 
27r cash (UU) - cos (a$) * (3.7) 

Owing to the difference in boundary conditions (r, = 1, while P = 0 on 8 = 0, x / a ) ,  
we cannot use (3.4) directly, but must seek an alternate combination of F-terms. We 
investigate first the functional behaviour of F($) ,  which may be summarized as 
follows (figures 4 a, b) : 

(i) F(q5) is continuous for 0 < 9 < 2x/a and periodic with a period 27r/a, 
(ii) F($)+O as #+7r/a, and 
(iii) F(#)++ as $+ + O  and F($)+ -4 as $-+ -0. 

Properties (i) and (ii) are readily seen by inspecting (3.7). Property (iii) means that 
F has a jump discontinuity at $ = 0. This is because as $ + O ,  sin (a$) multiplied 
by the integral has a finite limit there, while the sin changes its sign. Indeed, if we 
put b = sin ($$), then, as b+O, most of the contribution to the integral comes from 
the vicinity of u = 0, in which case sinhu x u, sinh ($u) x @u. Taking the real part 
of (3.7) we get near b = 0 (noting that sin (ad)  = 2 sin ($4) cos ($6) x 2b there) 

ab cos (kru) du 
F(b)  % jo ( $ a ~ ) ~ +  b2 * 

Changing to x = ?pu, du = 2dx/a, we get 

b O0 cos(2krx/a) dx b 
F(b)  Jo X2+b2  

Hence, for small 4 

2F($) z sign (d) exp ( -  krl$l)+sign ($) as $ + O .  

From the above properties of F($) ,  it clearly follows that the solution of the 
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FIQURE 4. Diffraction term 2F(q5), with q5 = x / a - 8  and a = 0 :  (a) its functional behaviour in 
the range -2x < 8 < 2 x  for r = 0.1 and r = 1.0; ( b )  as a rotating sink of a unit strength. The 
domain is 2X x 2X and contour spacing is 0.1. Unless noted otherwise, the same applies to the 
subsequent contour plots. 

boundary-value problem (2.37) and (3.1) is given by the sum of the four diffraction 
terms 

or, explicitly, 
p ( r ,  8) = 2F(8)+2F 

(3.9) 
exp [ikr sinh (ula)] cosh u du 

sinh2 u + sin2 (a@ P =  7c 
sin lo 

Since each F-term satisfies (2.37) (with k = t ) ,  then so does p. One can also show 
this directly by taking derivatives of p with respect to r and 8 and substituting back 
into (2.40). While doing such an exercise, it is useful to know that the value of the 
integral in (3.9) does not change when its upper limit is replaced by 00 +id, with the 
only condition that 0 < d < ax. This is needed since, when differentiated with respect 
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s,----- 

M 

v 0.1 A 

FIGURE 5. (a )  The O(1) stream function so =pa (continuous contours) and its homogeneous 
counterpart sh (dashed contours); sh is the solution of Veah-ah=O. ( b )  Contours of 
M = [8;-(vso)2]/280. 

to r ,  (3.9) gives an apparently divergent integral, which can be transformed into a 
convergent one by integration by parts, and the integrated terms vanish when the 
upper limit has this extra +id. This is analogous to artificial viscosity, which is often 
used as a convenient way to get convergence at infinity (see, for example, Carrier, 
Krook & Pearson 1966, p. 337). 

It should be noted that the solution to the boundary-value problem, (2.40) and 
(3. l ) ,  can be written in a number of ways. The more conventional form is a boundary 
integral of Green’s function that is given in terms of modified Bessel functions of a 
fractional order (see (3.13) in the next section). Alternatively, one can use the 
Kantorovich-Lebedev transform, which contains a modified Bessel function of an 
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- 1  

FIQURE 6. (a) The right-hand side of (2.38), f = s , fW.  ( b )  The O(s) stream function variable sl. (c) 
The total transport stream function $ = $,,+e+l, for s = 0.5. (d) Comparison between +o (6 = 0) 
(broken line) and $ (6 = 0.5) (solid line). [Contour spacings: 0.2 in (a) and (d), 0.02 in (b)  and 0.1 
in (e).] 

imaginary order (Stakgold 1968). Therefore, it should be possible to derive (3.9) 
directly from any of the above. This may be an interesting exercise in itself but is 
outside the scope of this paper. We only note that (3.9) is easier to compute since 
it does not involve special functions. Moreover, the diffraction formula of Whipple 
(1916) may be the shortest way to its derivation. 

It is a simple exercise to show that for the particular case of a straight coastline, 
a = 1, (3.9) reduces to the upstream profile p = e--RZ, where 2 is the normal distance 
to the boundary and k = (hence, so = e-Z). For a =!= 1, a numerical quadrature can 
be used to evaluate (3.9) or (3.7). The term ZF(n/a-6) can be thought of as 
representing a linear rotating flow from the upstream into a sink a t  the apex of the 
corner (figure 4b). Similarly, 2F(6) would be a source flow from the apex. Their sum, 



Rotating flows along indented coastlines 39 1 

0.9 0.7 0.5 

5 I 0.4 0.3 0.2 

7 0.5 0.3 

FIGURE 6 ( c )  and (d). For caption see facing page. 

raised to the power g, according to (2.35), gives so, the O(1) stream function, which 
is plotted on figure 5 ( a )  for a = f (most of the figures are drawn for this choice of a). 
8h, the solution to the homogeneous counterpart of (2.34), is also shown on this 
figure. The difference between the two is very small, less than 0.03. This means that 
M, the nonlinear forcing term on the right-hand side of (2.34), plotted on figure 5 ( b ) ,  
has a small effect on the O( 1) solution (it moves the streamlines somewhat away from 
the corner). As expected, for large T ,  so reduces to the upstream profile e-2, where 
x is the distance from either boundary, while for small T it is given by the 
potential-flow stream function raised to the power g, [l - (kr)= sin (a0)F. 
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0.8 ‘‘OI 

-1.0 -0.81-0.6 -0.4 -0.2 

- 3  

FIQURE 7. (a) The O(E) depth variable h,; (b) contours ( B  = 0.5); and ( c )  three-dimensional view 
of the depth of the interface, h = h,+ehl (for B = 0.5). 

3.2. The O ( E )  solution 

We now proceed to solve the second boundary-value problem, (2.41) and (3.2). 
Formally, the solution may be written as 

dx, y) = s sf(x’, y’) G(x ,  y I x’, y’) dx’ dy‘, (3.10) 

where the integration is over the specified domain, f is the right-hand side of (2.41), 

f = p- jw ,  (3.11) 

and W is given by (2.37). The Green’s function G(x ,  y I x‘, y’) satisfies 

V2G-k2G = &(~-~ ’ )& (y -y ’ )  (3.12) 
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393 

-0.5 

FIQURE 7(c). For caption see facing page. 

and vanishes on the boundary. It can be written in terms of the modified Bessel 
functions (see, for example, Stakgold 1968), 

with r., = max(r, r ’ )  and r <  = min(r, T’ ) .  Due to the symmetry of the wedge 
problem, only the odd terms in (3.13) contribute to the integral in (3.10). We will 
also be satisfied with approximating the O(E)  term q. Calculations show that even 
if only the leading term in (3.13), 

2a 
G x -- sin (a0) sin (d) K,(kr,) I , (k r<) ,  

7c 
(3.14) 

is retained, the value of q is increased by no more than a few per cent. We compute 
(3.10) using a simple quadrature routine. Figures 6(a,b) show contours of the 
functionf and of 8, = p-iq respectively. Somewhat surprisingly, the maximum value 
of s1 is less than 0.2, and as a result no separation is evident in the streamlines of 
$ = 8: + 268, s,, which are shown in figure 6 ( c )  for E = 0.5. The only noticeable effect 
of the O ( E )  term on the transport stream function $ is to move streamlines away from 
the corner (figure 6 4 ,  an effect which may be attributed to the centrifugal 
acceleration of the fluid. Note that since the horizontal scale is X = R/&, statements 
concerning the E = 0 case should be interpreted in the limiting sense, E+O,  only. 

Using (2.29), we calculate the O(s)  depth, 

h, = 8, + Ms,, (3.15) 
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aJ 
t 

FIGURE 8. Depth-integrated kinetic energy hU: (a) E = 0;  ( b )  E = 0.5. For clarity, the in corner 
was deleted in this figure. 

and from (2 .27b)  and (3.15) we obtain the O ( B )  velocities, 

u, = -s lv-Muo ( 3 . 1 5 ~ )  

and v, = slz-Mvo. (3.15b) 

Contours of h, are plotted on figure 7 (a),  while figures 7 (b ,  c) show the total depth 
of the interface h = h, + ehl. The depth-integrated kinetic energy 

hU = h[( Uo+ €(u0 u, + vo v,)] 
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is shown on figures 8(a, b)  for the two values of E = 0 and 0.5. Figure 7(c )  shows 
clearly the effect of the nonlinear advection terms: a centrifugal upwelling for a 
re-entrant (a  < 1 )  corner. In  contrast, downwelling would be expected at an inside 
(a > 1) corner. It is also apparent that for large E and/or large corner curvature, we 
may expect a surfacing of the pycnocline, i.e. separation of the streamlines from the 
boundary just before or at the corner. This is only vaguely discernible on figure 6 ( c ) .  
Owing to the assumed power-series form, (2.21), there is little confidence in the 
derived solution that close to the corner, where the O(E)  terms are larger than the 
O(1) terms (see below). This is especially true for re-entrant corners. A separate 
calculation, which was done for smaller scales (Cherniawsky 1985), shows separation 
of streamlines very close to the apex. The question of validity of the solution is 
examined below, while separation is discussed in the end of the section. 

3.3. The validity of the solution 

For a re-entrant corner of infinite curvature, the solution is not valid a t  the apex, 
where the velocities u and v are infinite. We must also require that each of the four 
series in (2.21) converge to a finite limit. We cannot prove convergence of (2.21), but 
ask instead that the O(E)  terms be of the same order of magnitude, or smaller, than 
the 0(1) terms. Specifically, we require that 

( 3 . 1 6 ~ )  

(3.16 b )  

and lull < uo, ( 3 . 1 6 ~ )  

where U, = uoul+vovl  is the O ( E )  kinetic-energy term. Using (3.15a, b )  and (2.29), 
the last inequality may also be written as 

I V S , . V S ~ - ~ M U ~ I  < Uo. (3.16d) 

Figures 5 ( a )  and 6 ( b )  show that ( 3 . 1 6 ~ )  is satisfied everywhere. Forming the ratios 

and 

(3.17) 

(3.18) 

we plot contours of rl and r2 on figures 9 (a, b ) ,  superimposed upon a few streamlines 
$ (for E = 0.5). 

These figures show that (depending on E )  the solution is valid ( r l ,  r2 <1) for 
relatively (but not infinitely) sharp re-entrant corners, as long as the rounded 
boundary (e.g. $ = 0.9)  streamline does not penetrate inside the curve r1 = 1 .  

3.4. Supercritical flow 
Since for a re-entrant corner the velocity of the fluid is high near the apex, we expect 
the flow to be supercritical there. The local Froude number, 

(3.19) 

is contoured together with $ on figure 9 ( c ) .  For the chosen flow parameters 
( E  = P = 0.5, a = $) half of the total transport is passing through the supercritical 
region, where Fr > 1 .  This means that disturbances generated downstream of the 
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* 

1 1  
.O -0.8,-0.61-0.4 -0.2 

4 

4 

1 

FIQURE 9. Contours of (a) rI = Ih,/hol = 0.3, 1.0,2.0; ( b )  r2 = IU,/UoI = 0.1, 1.0, 3.0 and (c) Froude 
number Fr = 0.7, 1.0, 2.0 (the critical value 1.0 is in bold), each superimposed upon streamlines 
$ = 0.4 to 1.0 ( E  = 0.5). 
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corner cannot propagate upstream, which may cause a hydraulic jump near the 
second (downstream) Fr = 1 line. I n  our case, the conditions downstream are 
determined by the upstream parameters since, in the absence of another boundary 
close by, the Kelvin wave can propagate only with the boundary on its right. Hence, 
for this steady model, no hydraulic jump is expected as the flow rc-enters the 
subcri tical regime. 

It should be pointed out, however, that while no stationary jump is predicted a t  
a corner, travelling disturbances in the form of shock waves or bores are quite likely. 
These may arise, for example, when there is a sudden change in upstream conditions 
(like an  increase in transport), in which case a fully nonlinear shock wave will be 
generated. According to Nof (1984), this shock would then propagate downstream 
(along a straight vertical boundary) at a speed larger than that of a Kelvin wave 
associated with both the disturbed and the undisturbed flow. Because the shock is 
faster than the sum of the downstream (with respect to the shock) advection speed 
and the downstream Kelvin wave speed but slower than the corresponding sum 
upstream of the shock, no energy is lost from the shock (except for small frictional 
losses) and the shock retains its form (Nof 1984). It is not clear however how such 
shock is transformed when it rounds a sharp corner. As in the case of monochromatic 
Kelvin waves (Packham & Williams 1968; Buchwald 1968; Miles 1972), one may 
expect that  a certain amount of diffracted energy loss (Poincark waves) will occur 
in its higher (super-inertial) frequency components. Thus the shock wave downstream 
of the corner will be less energetic and, possibly, of a different shape than when i t  
was upstream of the corner. 

3.5. Separation 
The power-series expansion (2.24) is not valid very close to the apex. We rewrite 

h++sw2 = s+!p2 ,  (3.20) 
(2.21)-(2.23): 

(3.21) 

-wh = SS,, (3.22) 

where w = (uz + v2): is the speed, r is the radius of curvature of a streamline and the 
subscript n denotes a normal derivative. We now consider a boundary streamline, 
s = 1 ,  and assume rc t o  be the radius of curvature that causes its separation. Upon 
separation h = 0, and from (3.20) the speed w = ( 1  + 2 / ~ ) :  is constant. From (3.21) 
we get 

(3.23) 

i.e. the relative and the planetary vorticities are equal. Differentiating (3.20) in the 
normal direction, and substituting into (3.23) yields the momentum equation 

€W2 
-h,+- = W ,  

r C  
(3.24) 

which states that  the balance between the pressure gradient and the centrifugal force 
is held by the Coriolis force. Equation (3.24) is satisfied for any, however small, re 
(with a correspondingly steeper interface slope h,). Therefore, this simple model does 
not give us the critical separation curvature. Calculations, which were done for 
smaller scales (of the order of e 2 X )  near the apex (Cherniawsky 1985), show that, for 
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example, for a = and E = 0.5, r, < 0.02 and hence the centrifugal upwelling is not 
important if the (dimensional) radius of curvature of the rounded corner is larger 
than about 0.1X. 

In  this respect, we would like to point out that the centrifugal upwelling at a sharp 
cape, and the resulting doughnut-like shape of the interface (figure 7c)  are exactly 
analogous to (hypothetical, since no one has ever observed them) anomalous warm 
eddies with a cold core, which have surfaced, for example, as a possible solution in 
Flied’s (1979) analytical two-layer model of the structure of warm- and cold-core 
rings. The balance of forces is the same - geostrophy on the outside and a cylostrophic 
balance on the inside. Figure 13 in Flierl (1979) shows a straight-line relation between 
the strength of the ring, as it was defined by Flierl: eF = - (2s+e2)t ,  and its inside 
radius ro. Although this line stops short of the r0 = 0 axis (presumably owing to the 
singularity of his governing equation), it does seem to indicate that for eF > x - 1.5 
( E  < 0.8) the inner (cold) core of the ring disappears. In that case, the smaller 
centrifugal force is no longer sufficient to hold the inner slope for the upwelling to 
take place, and the ring stops being anomalous. Despite the differences, Flied’s 
constant-potential-vorticity (and hence deeper upper layer; see $2) radially symme- 
trical model seems to indicate that the horizontal extent of a centrifugal upwelling 
around a sharp re-entrant corner should be rather small for €-values that are 
consistent (e.g. B < 4) with the expansion (2.21). This agrees well with our results, 
and in particular with figure 7 (c). 

Because of its limited extent, the centrifugal upwelling is not the most likely cause 
of separation of the boundary streamline. Other effects may be more important. For 

‘example, if there is an adverse pressure gradient which raises the depth of the upper 
layer to its maximum value, 1 ++, then from (3.20) we get a stagnation point, where 
w = 0, and hence separation. This pressure gradient could be caused by changes in 
buoyancy, wind forcing, or barotropic effects (e.g. changes in bathymetry). In 
addition, enhanced Ekman pumping (due to higher velocities at the corner) may 
contribute to upwelling and hence to separation. Consequently, a three-dimensional 
frictional model may be required to answer this question about the separation at  a 
sharp cape. Merkine & Solan (1979) have shown that in the case of a uniform stream 
(V, = constant) of depth H past a circular cylinder of diameter D and for a small 
Rossby number, Ro = V,/fD < 1 (i.e. large D,  or small K), the flow separates at  some 
point on the cylinder, 8 < R ,  if the ratio 

(+E,):/Ro = (vf)4D/(2HVc) < 1, 

where E, is the vertical Ekman number and u is the eddy viscosity. For e w t ,  the 
condition Ro @ 1 is equivalent to X/D @ 1. Although this suggests that Merkine & 
Solan’s (1979) results are not applicable to strong flows around sharp corners, an 
analogous approach may prove fruitful. 

While the problem of separation remains to be solved, let us assume, for example, 
that the flow does separate. This results in an anticyclonic baroclinic jet that would 
impinge on the straight coastline (downstream of the corner) at  some non-zero angle. 
But, since the speed on the free streamline (s = 1, h = 0 for the inviscid model) is 
finite, it  cannot pass through a stagnation point and hence it must turn right, away 
from the boundary (figure 10a). A transient adjustment process follows, whereby 
part of the flow pours into a closed gyre, while a different streamline, 8 < 1, passes 
through a stagnation point. As the size and the depth of the gyre increase, 
higher-valued streamlines move through the stagnation point. An equilibrium is 



Rotating jlows along indented coastlines 399 

* = l  

(a) (b) 

FIQURE 10. Conceptual drawing of the boundary streamline $ = 1 (a) just after separation and 
(b )  after its re-attachment. 

reached, when the depth of the separated streamline attains its maximum value, 
h = 1 ++, which allows it to pass through the stagnation point (figure lob) .  In this 
context, the work of Whitehead (1985) on the deflection of a baroclinic jet by a wall 
becomes relevant. His results indicate that upon impingement the flow bifurcates, 
with a larger part turning to the right, in support of the above description of the 
adjustment process. The final size of the gyre may be a function of the wedge angle, 
the Rossby number, and the interfacial friction. Additional evidence for gyre 
formation behind a re-entrant corner was given by the experiments of Whitehead & 
Miller (1979) and of Kawasaki & Sugimoto (1984). Although friction and different 
upstream depth profiles do not allow for a detailed comparison between these 
experiments and our results, Kawasaki & Sugimoto's (1984) results indicate that the 
gyre is formed for Rossby numbers greater than 0.5 (with some dependence on the 
Ekman number), while for smaller Rossby numbers the coastal jet stays attached 
to the wall. We note that our qualitative description of the formation of the gyre 
is based on the assumption that the Bernoulli's function C($) and the potential 
vorticity function K(+)  remain invariant during the adjustment process, which may 
not be entirely true. If generation of some type of gravity waves accompanies the 
process, then the energy and the final size of the gyre will be affected. However, it 
is conceivable that for certain upstream conditions the free streamline could turn 
away from the boundary (i.e. to the left), forming a free jet, in which case there will 
be no re-attachment. 

4. The case of more complicated geometries 
The corner solution, given in the previous section, is readily extended to coastlines, 

which are composed of two or more corners, as long as no two corners are closer than 
about one (non-dimensional) unit. We invoke this restriction because of the nonlinear 
behaviour of the corner solution up to distances of 0.5X from the apex (figure 6 4 ,  
and because, for r < 1, the normal derivative of the diffraction term F(8)  does not 
vanish at the boundary 8 = 0 (figure 4a).  For the case of a channel mouth, this 
restriction of minimum width can be relaxed if the nonlinear terms are small ( E  < 1). 
We chose two examples to demonstrate the method. 
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4.1. Circulation in the mouth of a channel 

LeBlond (1980) showed that in the case of a wide channel two baroclinic jets can 
coexist independently on opposite sides of the channel. In this respect, it may be 
convenient to classify channels into 3 categories: ( i )  narrow channels, narrower than 
the Rossby radius of deformation; (ii) intermediate channels, of widths between 1 
and 3 Rossby radii; and (iii) wide channels, with widths larger than 3 Rossby radii. 
In the case when Rossby radii are different on opposite sides of the channel, some 
mean value can be used. In  the absence of additional dynamical constraints (e.g. 
adverse pressure gradients), the last category of a wide channel is trivial, since the 
two jets do not interact a t  all. In order to give a simple example, we choose the case 
of a channel of intermediate width, whose sides are at a right angle to  the coastline. 
We orient the axes so that the two sides are parallel to the negative x-axis, with the 
origin halfway between the two corners. Ignoring the O(e)  terms, the total solution 
$ = pj is built as a linear superposition of two corner solutions, 

P = BlPl+B2P,. (4.1) 

Our solutions are not valid in small areas around each sharp re-entrant corner. We 
can overcome this problem by rounding these corners, so that the areas in question 
are removed from the domain of the solution. In order to  round off the apex of each 
corner, p, and p2 were rescaled by factors, which we call recession parameters, of 
exp (1.56,) and exp(1.56,) respectively. Each 6, > 0 (i = 1, 2) is actually the distance 
between the side of the (recessed) corner and the boundary streamline $ = 1 (away 
from the apex). 

The constants B, and B, are calculated (for this case of a non-divergent channel) 
from the requirement that far inside the channel 

P ( Z ,  d) = 1 

and p(x,-d) = l + B  = (1+A)I, (4.2a, b )  

where 2d is the width of the channel, A (> 1)  is the additional transport out of the 
channel and B is defined by (4.2b). For large negative x we have 
p, = exp [ - 1.5( - y + d + S,)] and p, = exp [ - 1.5(y + d + S2)]. Assuming for simplicity 
that p, and p, have equal radii of deformation and that 6, = 6, = 6,  we get from the 
two-point matching (4.1) and (4.2), 

and 

e3d- ( 1  + B )  

( 1 + ~ ) ~ 3 d - 1  

2sinh ( 3 4  ’ 
B, = exp (1 56) 

B, = exp (1  56) 
2sinh ( 3 4  ’ 

so that far inside the channel, where p is independent of x, 

(1++B) cosh(1.5y) - fBsinh(l .5y) 
= cosh (1.54 sinh (1.5d) ’ 

(4.3a) 

(4.3b) 

(4.4) 

Note that while this two-point matching procedure is not exact, i t  results in only 
minor distortions of boundary streamlines and is very simple to implement. (Only 
if d NN 0.5 and if A 9 1 ,  or 1 + A  6 1 ,  the distortion may become large, in which case 
it is advisable to use different recession parameters, a larger one for a corner with 
a smaller transport.) Note that (4.4) is essentially Gill’s (1977) equation (5.2), and 
is applicable to a channel of slowly varying cross-section. 
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FIGURE 11. Circulation in the mouth of a channel: contours of the transport streamfunction $o 

ford = 1.0, 8 = 0.1: (a) A = 0, (b) A = 1.  
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FIQURE 12. Location of the stagnation streamline, yo and its value there $o(yo), aa functions of 
the transport parameter A ,  for three values of channel width: 2d = 1 ; 2d = 2; and 2d = 3. 
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(b)  

(c) 
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2’ol 1 .o 

- 3  

FIGURE 13. (a)-(f) Construction of the solution for 
The solution for a square bump in a channel 

-210 -1:o 0 1;o 2.0 

a flow around a square bump in a coastline. 
is shown for (8)  A = 0 and (h)  A = 1 .  
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FIQURE 13(g) and (h).  For caption see facing page. 

Figures 11 (a,  b )  show the resulting circulation for $he case d = 1,  6 = 0.1, and for 
A = 0 (zero net outflow) and A = 1 (net outflow equal to the upstream transport). 
Only about 30% in the first case (A = 0) and about 40% in the second case (A = 1) 
of the upstream transport is recirculated across the mouth and out of the channel. 
The rest of the incoming transport continues up the channel. This is of course due 
to the dynamical control placed by the Rossby radius and the width of the channel 
upon the relative transports on the opposite sides. Differentiating (4.4), we find that 
p has a minimum at yo, given by 

tanh (1 .5y0) = ~ cotanh (1.5d). 
(2 + B) 

(4.5) 

In that case $(yo) is, in effect, the fraction of the incoming transport that is deflected 
across and out of the channel. In  particular, when B=O (A = O ) ,  yo = O  and 
$(yo) = [sech(l.5d)]f. If 1 +  B > cosh(3d), then yo > d, and the flow is out of the 
channel even on the left bank (looking downstream). Similarly, when 
0 < l + B  < sech(3d), then yo < -d, and the flow is uniformly into the channel. 
Figure 12 (a)  shows the relation between A and yo for three values of d:  0.5, 1 .O and 
1.5 (which span the intermediate width category), while figure 12(b) displays 
corresponding values of $(yo) = p(y,)i, the fraction of the incoming transport that 
is recirculated out of the channel. 

Similarly, in the case of a channel with diverging coastlines, the same two-point 
matching technique can be applied to the corners themselves, in which case 2d is the 
distance between the two apices. 

4.2. Flow around a square bump 
In order to construct a solution for the second example, we start with two corner 
solutions: one for the $t (a  = g) re-entrant corner, Ghich was described in detail in 
$3, and the other for an inside (a = 2) corner. In addition, we use source and sink 
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transport stream functions, 2F(O) and 2F(n-O), for a straight (a = 1 )  coastline. The 
procedure is best described graphically, as shown in figures 13 (a-f ). We first subtract 
the source and sink functions, 2F(O) and 2F(n-O), from the re-entrant corner 
solution (figure 13a), one unit distance upstream and downstream of the apex. This 
gives us the source and sink flow, shown on figure 13(b). Deleting the sink function 
2F(n-O) from the inside-corner solution (figure 13c), one unit distance upstream of 
the apex, yields the source flow, shown on figure 13(d). Combining the last source 
with the sink on figure 13(b) gives us the source flow, which is shown on figure 13(e). 
Finally, combining this source with its image (in the z-axis) sink and raising to the 
power 4 results in t,b, the flow about the 2 x 2 square bump, as shown on figure 13 (f ). 
However, subtracting a source and a sink at  a point on a straight boundary is 
equivalent to subtracting an exponential profile from that boundary. In other 
words, instead of using sources and sinks in the above procedure, one can simply add 
two corner solutions with a common boundary, and then subtract the resulting 
surplus exponential current profile from that boundary. The restriction of the 
common boundary being at least one unit long stands as before, since the procedure 
is no longer valid close to the corners, where the profile is not exponential. 

It is trivial to add a current in the opposite direction, which is (say) bounded by 
a wall 2 units away from the bump. The resulting baroclinic circulation around a 
square bump in a wide channel is shown on figures 13 (9)  (the case of equal transports) 
and 13 ( h )  (double transport in the opposite direction). Note that about 30 % of the 
incoming transport in the first case, and about 40% in the second case, is diverted 
back upstream by the opposing current. This is the same recirculation as in the case 
of the channel mouth (figures 11 a,  b )  and is caused by the dynamical constraint due 
to the scale of the Rossby radius of the flow. 

5. Discussion 
From the nonlinear conservation equations that govern an inviscid upper-layer 

flow in a two-layer rotating fluid, we obtained the first two terms of the perturbation 
expansion which represents the solution to the problem of a flow around an arbitrary 
corner. It was found that the 0(1) term is geostrophic and, except for narrowing 
(widening) of the flow near a re-entrant (inside) corner, it does not differ qualitatively 
from the flow upstream. The effects of the nonlinear (advection) terms in the 
equation of motion become quite evident when the O(E)  term is added to the 0(1) 
term: the flow widens (for re-entrant corners) owing to the centrifugal acceleration 
of the fluid and, in addition, the depth of the upper layer decreases to almost zero 
near the apex of the corner (although we did not calculate this explicitly, we assume 
that near inside corners the effect is opposite : the O(s) terms cause some increase in 
the depth). This is a manifestation of the centrifugal upwelling (downwelling). This 
upwelling is only important for relatively sharp corners. The validity of the solution 
and the continuity of the boundary streamline (i.e. the absence of separation) require 
that the sharp apex of the re-entrant corner be blunted to a certain extent. This can 
be successfully accomplished if one of the neighbouring streamlines is assumed to be 
the physical boundary, the choice depending upon the required radius of curvature. 
Using these recessed corner solutions we were able to generate streamlines of 
plausible flows in more general domains: inside channel mouths and around coastal 
indentations. 

Further improvements to the present model will come from the incorporation of 
alongshore pressure-gradients effects. These may be due to changes in buoyancy (e.g. 
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due to coastal sources), or due to compression of the vortex lines by changes in the 
total depth. For example, in the case of a 'long' bathymetry (horizontal scale L much 
larger than X), we may use a method similar to that of Cushman-Roisin 6 O'Brien 
(1983) and apply a perturbation expansion in a small parameter X/L. For 
X/L 4 E < 1 ,  the full corner solution is still valid locally near each corner, including 
the O ( E )  terms, except that k (e.g. in (3 .9) )  is modulated (in the WKB sense) by 
changes in bathymetry, If X/L x 6, then the O(s)  equation (3.10) must also be 
modified to include these barotropic effects. 

Effects stemming from the variability of the flow were not included in the present 
study. For example, the criterion for separation of the flow at a sharp cape would 
have to be modified if the sum of residual and tidal currents were sufficient to cause 
separation at some stage of the tide. Once separated, the flow is likely to remain that 
way, even during reversals of the tide. This is due to the adverse pressure gradient 
from the closed gyre (see figure lob) that is likely to appear on the downstream side 
of the cape. It is quite possible that this mechanism may be responsible for the 
separation of the Gibraltar surface flow from the right bank as it enters the Albortin 
Sea. A detailed investigation of the available data and models of rotating flows 
around re-entrant corners with variable depth may provide an answer to this 
question. 

This work was funded by the Natural Sciences and Engineering Research Council 
of Canada under Strategic Grant G-0750. 

Appendix. Derivation of the O ( E )  equation for s1 

( 2 . 2 5 ~ )  to ( 2 . 2 6 ~ )  and use (2.28)-(2.30), we get 
We derive an equation for sl, treating so as a known function of x and y. If we add 

(8, WJZ - (8, ul)y + 8, V28, = 29, 8, +so h,. (A 1 )  

But, from (2.27b),  

so that 

We eliminate h, in favour of 8, using (2.32),  which also gives 

V2( 8, 8,) - h, V28, - VS, . Vh, + 5, V28, = 28, 8, + 8, h, . 

Vs,.Vh, = ~ 8 0 ~ ~ S , ~ 8 0 ( ~ S 0 ) 2 - ~ ( ~ 8 0 ~ ~ )  (v8,)2, 

so V28, + vs, * V8, + (V25, - 38,) s1 = w, 

(A 3 )  

(A 4 )  

from which (2 .35) ,  the equation for sl, follows : 

where w = i(V28, + 8,) [f - (Vs0)2] + s0(Vs,)2 - p s ,  * V) (Ve,)2. 

But, from (2.31) 

so that W simplifies to (2.36) 

8; - ( Vs,)2 

280 ' 
V28, + 8, = 
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